Spectral Reconstruction of Piecewise Smooth Functions from Their Discrete Data
نویسندگان
چکیده
Abstract. This paper addresses the recovery of piecewise smooth functions from their discrete data. Reconstruction methods using both pseudo-spectral coefficients and physical space interpolants have been discussed extensively in the literature, and it is clear that an a priori knowledge of the jump discontinuity location is essential for any reconstruction technique to yield spectrally accurate results with high resolution near the discontinuities. Hence detection of the jump discontinuities is critical for all methods. Here we formulate a new localized reconstruction method adapted from the method developed in Gottlieb and Tadmor (1985) and recently revisited in Tadmor and Tanner (in press). Our procedure incorporates the detection of edges into the reconstruction technique. The method is robust and highly accurate, yielding spectral accuracy up to a small neighborhood of the jump discontinuities. Results are shown in one and two dimensions.
منابع مشابه
A Hybrid Approach to Spectral Reconstruction of Piecewise Smooth Functions
Consider a piecewise smooth function for which the (pseudo-)spectral coefficients are given. It is well known that while spectral partial sums yield exponentially convergent approximations for smooth functions, the results for piecewise smooth functions are poor, with spurious oscillations developing near the discontinuities and a much reduced overall convergence rate. This behavior, known as t...
متن کاملReducing the Effects of Noise in Image Reconstruction
Fourier spectral methods have proven to be powerful tools that are frequently employed in image reconstruction. However, since images can be typically viewed as piecewise smooth functions, the Gibbs phenomenon often hinders accurate reconstruction. Recently, numerical edge detection and reconstruction methods have been developed that effectively reduce the Gibbs oscillations while maintaining h...
متن کاملPiecewise Smooth Data from its Spectral Information
We discuss the reconstruction of piecewise smooth data from its (pseudo-) spectral information. Spectral projections enjoy superior resolution provided the data is globally smooth, while the presence of jump discontinuities is responsible for spurious O(1) Gibbs oscillations in the neighborhood of edges and an overall deterioration to the unacceptable rst-order convergence rate. The purpose is ...
متن کاملAdaptive Mollifiers – High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
We discuss the reconstruction of piecewise smooth data from its (pseudo-) spectral information. Spectral projections enjoy superior resolution provided the data is globally smooth, while the presence of jump discontinuities is responsible for spurious O(1) Gibbs oscillations in the neighborhood of edges and an overall deterioration to the unacceptable first-order convergence rate. The purpose i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002